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Summary. Over recent years there has been a growing interest in using financial trading net-
works to understand the microstructure of financial markets. Most of the methodologies that
have been developed so far for this have been based on the study of descriptive summaries
of the networks such as the average node degree and the clustering coefficient. In contrast,
this paper develops novel statistical methods for modelling sequences of financial trading net-
works. Our approach uses a stochastic block model to describe the structure of the network
during each period, and then links multiple time periods by using a hidden Markov model. This
structure enables us to identify events that affect the structure of the market and make accurate
short-term prediction of future transactions. The methodology is illustrated by using data from
the New York Mercantile Exchange natural gas futures market from January 2005 to December
2008.
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1. Introduction

Financial trading networks are directed graphs in which nodes correspond to traders partici-

pating in a financial market, and edges represent pairwise buy–sell transactions among them

that occur within a period of time. Financial trading networks contain important information

about patterns of order execution in order-driven markets where all buyers and sellers display

the prices at which they wish to buy or sell a particular security. Therefore, they provide insights

into aspects of market microstructure such as market frictions that influence the execution of

trades, trading strategies and systemic risks that could cause the collapse of the market. For

example, consider the role of financial trading networks in understanding the effect of market

frictions on market microstructure. In the absence of market frictions, we could expect orders

from different traders to be matched randomly. However, real trading networks often exhibit
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features such as elevated transitivity or preferential attachment among certain groups of actors

(Adamic et al., 2010), which are inconsistent with random matching. In the case of open out-

cry markets, these features can be partially explained by sociological factors (for example, see

Zaloom (2004)). Alternative explanations include the effect of different market roles (e.g. liq-

uidity providers or takers) or trading strategies (e.g. long versus short strategies); see Ozsoylev

et al. (2010) or Hatfield et al. (2012).

Financial trading networks also provide information that is key in the assessment of systemic

risks. Analysis of the evolution of the networks over time, particularly the detection of drastic

structural changes, can aid in tests of financial market stability (or fragility as it may be) by

financial regulators to ensure that events such as a large trader failure do not serve to destabilize

financial markets. For example, identifying the failure of a large trader and understanding how

it affects the network structure will help to guide regulators through the process of unwinding

their positions and may dictate whether those positions are unwound in the open market or

through a transfer to a suitable counterparty (Boyd et al., 2011). Here, we are interested in

a model for change point identification that can be used by regulators in the analysis of the

dynamics of trading networks to improve market supervision. The analysis of trading networks

can also be utilized to identify important traders who play a critical role in the market (e.g.

by acting as de facto market makers or liquidity providers). Moreover, they can also help us

to identify frequent counterparties of specific traders which may aid in regulatory oversight by

federal agencies and market exchanges alike. Indeed, there is evidence that price distortion and

manipulation may be more likely between frequent counterparties than by one agent acting in

isolation (Harris et al., 1994).

The literature on the mathematical modelling of financial trading networks is limited. Theo-

retical approaches that explain the structure of a financial network as the outcome of a game

have recently been developed (for example, see Ozsoylev et al. (2010) and Hatfield et al. (2012)),

but they are of limited practical applicability. Most of the empirical work on trading networks

has focused on the use of summary statistics such as degree distributions, average betweenness

and clustering coefficients (Newman, 2003; Adamic et al., 2010). These types of approach pro-

vide some interesting insights into market microstructure but suffer from two main drawbacks.

First, the summary statistics to be monitored need to be carefully chosen to ensure that relevant

features of the market are captured (for an example of this, see Section 2). Although some of

the game theoretic work that was mentioned before might provide insights into which network

summaries should be monitored, the choice is typically ad hoc and the selection is often incom-

plete. Second, and more importantly, approaches of this type are not helpful in predicting future

interactions between traders.

In this paper we move beyond descriptive network summaries to focus on stochastic models

for array-valued data that place a probability distribution on the full network. The simplest

such model is the classical Erdös–Rényi model (Erdös and Rényi, 1959), which assumes that

interactions between any two traders occur independently and with constant probability that

is independent of the identity of the traders. This class of models, although well studied from

a theoretical perspective, is too simplistic to accommodate most realistic networks. As an al-

ternative, Frank and Strauss (1986) proposed the class of exponential random graph models

(ERGMs), which are also called pÅ-models. These models formalize the use of summary statis-

tics by including them as sufficient statistics in exponential family models. A temporal version

of the ERGM was introduced in Hanneke et al. (2010) and further developed in Cranmer and

Desmarais (2011) and Snijders et al. (2010). The class of p1-models, which extends generalized

linear models to array-valued data, was originally proposed by Holland and Leinhardt (1981)

and extended to dynamic settings in Banks and Carley (1996), Goldenberg et al. (2009) and
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Kolacyzk (2009). Another related approach was introduced in Hoff et al. (2002), using the con-

cept of latent social space models. In this class of models the probability of a link between nodes

increases as they occupy closer positions in latent social space. Models that are based on latent

social spaces have again been extended to dynamic settings by Sarkar and Moore (2006) and

Sewell and Chen (2015), among others.

The model that is discussed in this paper extends the class of stochastic block models that were

first introduced in Wang and Wong (1987) to account for time dependence. Stochastic block

models rely on the concept of structural equivalence to identify groups of nodes with similar

interaction patterns. We are particularly interested in identifying groups of traders with similar

interaction patterns which we refer to as trading communities in the context of this application.

Our model is designed to identify trading communities where traders do not necessarily interact

with each other but interact with the same others. This is an important feature of the model

motivated by financial trading networks where disassortative community behaviour is key to

characterize trading patterns. Model-based stochastic block models have been developed as

array-valued extensions of traditional mixture models, and dynamic versions of these models

have recently been proposed. For example, Nowicki and Snijders (2001) presented a simple

Bayesian model that uses a finite mixture model and a Dirichlet prior for the probabilities of

the latent classes. A dynamic variant with a first-order Markov model was presented by Yang

et al. (2011). An extension of this model that relies on infinite mixture models based on the

Dirichlet process has been proposed by Kemp et al. (2006) and Xu et al. (2006). More recently,

Airoldi et al. (2008) introduced the idea of mixed membership stochastic block models for binary

networks wherein the actors can belong to more than one latent class to explore subjects with

multiple roles in the network, and Xing et al. (2010) developed a temporal extension.

Other approaches to dynamic stochastic block models include the work of Wang et al. (2014)

who proposed a method for change point detection using hypothesis testing and locality statis-

tics to identify anomalies over time, and the state space model of Xu and Hero (2014) which

introduces the extended Kalman algorithm as an alternative to Markov chain Monte Carlo

sampling. An extensive review of methods for anomaly detection in dynamic networks was

presented by Ranshous et al. (2015) including some relevant probabilistic models. For exam-

ple, Heard et al. (2010) utilized Bayesian discrete time counting processes with conditionally

independent increments to identify nodes whose relationships have changed over time (see also

Robinson and Priebe (2013)), and Perry and Wolfe (2013) considered a multivariate point pro-

cess to model directed interactions between actors in continuous time, and explored the effect of

homophily and network effects in the prediction of future interactions. Recent work presented

by Matias and Miele (2017) proposed a frequentist stochastic block model with independent

Markov chains for the evolution of the nodes groups, thus yielding a different community struc-

ture at each time point. This work overcomes common identifiability issues in other existing

modelling approaches by focusing on a prespecified number of groups that are stable over time

and show high connectivity within. As pointed out in Matias and Miele (2017), their approach

is better suited for contact networks where community stability is an important feature.

In this paper, we propose modelling the dynamics of financial trading networks by using an

extension of the Bayesian infinite dimensional model of Kemp et al. (2006). The model that we

propose is suitable for change point identification by accounting for dependence of the network

structure over time through a hidden Markov model (HMM). We also incorporate more general

hierarchical priors on the interaction probabilities as well as the partition structure. In particu-

lar, we allow for disassortative community behaviour to provide a more flexible representation

of trading patterns in the network over time. In addition, the number of communities is not spec-

ified in advance but rather estimated from the data at each state of the network. By assuming a
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non-parametric prior in the partition structure, the model enables the distributions of the num-

ber of groups and group sizes to adapt accordingly in the presence of market perturbations. We

expect the flexibility of disassortative behaviour and the community distributions over time to

aid the change point detection task significantly, which is the main focus in this paper. In finance,

regime switching models have been used in many contexts such as applications to model stock

returns (Guidolin and Timmermann, 2005; Kim et al., 2001; Perez-Quiroz and Timmermann,

2000), in asset allocation (Ang and Bekaert, 2002a), business cycles (Filardo, 1994) and interest

rates (Ang and Bekaert, 2002b) where prediction is also a key objective. As we show in our

illustration, by developing a flexible dynamic, fully probabilistic model for array-valued data we

can monitor structural changes in market microstructure while making short-term predictions

of future trading relationships.

2. Data

The data that we analyse in this paper consist of proprietary transactions made by traders in the

New York Mercantile Exchange (NYMEX) natural gas futures market between January 2005

and December 2008. A total of 970 unique traders participated in proprietary transactions at

least once over the 4 years to December 2008. However, this list includes traders who either

abandoned proprietary trading or went bankrupt during the period under study, as well as

traders who entered the market after January 2005. Indeed, only between 240 and 340 traders

participated in trades each week (Fig. 1(a)). Since identifying trading strategies in the presence

of the noise that is introduced by these transient traders is difficult and we have no detailed

information about the times at which different traders entered or left the market outside the

4-year period, our analysis focuses on a total of 290 traders who participated in transactions

in at least 25 weeks (out of 201) and had a number of trading partners of at least 50 over the

4-year period. The trading network with the selected 290 traders is a strongly connected graph

if we take into account all the transactions over the whole time period. Note that traders were

anonymized and are identified in the paper by using numbers.

We used the transaction data to construct weekly trading networks where a link from trader

A to trader B was established if there was at least one transaction during that week in which A

was the seller and B was the buyer. Data were grouped weekly because this is a low liquidity

market in which daily transactions do not provide any strong signal of community behaviour

and the number of daily participants is too low compared with the total number of traders

who were involved in the market over the 4-year period. Monthly transactions are coarser than

weekly transactions but show similar patterns and weekly observations enable us to have a more

refined exploration of the network data. In contrast, we considered binary networks instead of

weighted networks (e.g. the number or volume of transactions) because the presence or absence

of links provides enough information to understand the dynamic of the network in terms of

trader partnerships and community patterns.

Fig. 1 presents time series plots of the mean total degree (which measures the total number

of links that a trader has), clustering coefficients (which measure the tendency of traders to

establish transitive relationships) and assortativity coefficients (which measure the tendency of

traders to interact with other traders who are similar to themselves) for the 201 networks in

the NYMEX data set. These plots suggest at least a couple of change points in the structure

of the network, including one around September 5th, 2006 (which corresponds to the date of

introduction of electronic trading in this market via the Chicago Mercantile Exchange Globex

platform). To investigate the presence of change points in more detail we fitted a Bayesian HMM

with bivariate Gaussian emissions (see Appendix A for details of the model). First we fitted the
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Fig. 2. Mean posterior pairwise incidence matrix for the NYMEX networks under a simple HMM with
Gaussian emissions: (a) results based on the mean total degree and the clustering coefficient; (b) results
based on the clustering and assortativity coefficients
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model to the bivariate time series of mean total degree and clustering coefficient, and then to

the bivariate time series of clustering and assortativity coefficients. Fig. 2 shows the marginal

posterior probability that any pair of weeks are assigned to the same latent state on each model.

These graphs illustrate that the analysis of networks based on summary statistics depends sub-

stantially on the ad hoc choice of the summaries. Indeed, although both graphs provide evidence

of a change point around early September 2006, they disagree on whether other change points

are present and, if so, when those happened.

Finally, Fig. 3 presents a matrix representation of the trading network that is associated with

the week of February 22nd, 2005 (traders have been reordered to make the graph easier to

read). The graph suggests groups of traders who are structurally equivalent, including a large

group of inactive and low activity traders who do not participate or have a low number of

transactions during this particular week, as well as several small groups of traders including a

couple with a high number of intragroup and a relatively low number of intergroup transactions.

This suggests that a stochastic block model might be a reasonable model for individual trading

networks.

3. Modelling approach

3.1. Stochastic block models for financial trading networks

We encode a financial trading network among n traders by using an n×n binary sociomatrix

Y = .yi,j/, where yi,j =1 if trader i sold at least one contract to trader j, and yi,j =0 otherwise.

Since we focus on proprietary trading (i.e. transactions carried out by the traders with their

own money, rather than their clients’), we adopt the convention yi,i ≡ 0, as traders do not
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Fig. 3. Sociomatrix for the trading network associated with the week of February 22nd, 2005: , , one
possible partition of the traders into groups of structurally equivalent nodes
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buy from themselves. Note that treating the network as binary ignores information about the

transactions such as the number, maturities and prices of the contracts. We proceed in this way

for two reasons. First, in some markets (i.e. black pools) the prices and number of contracts

might not be disclosed, making it impossible to apply more general models. Second, even if

available, this extra information provides limited additional information about the identity of

counterparties subject to contagion risks. Nonetheless, the framework that we describe here can

be easily extended to more general types of weighted networks.

A stochastic block model for Y assumes that its entries are conditionally independent given

two sets of parameters: a vector of discrete indicators ξ= .ξ1, : : : , ξn/, where ξi = k if and only

if trader i belongs to community k = 1, : : : , K, and a K × K matrix Θ = .θk,l/ such that θk,l

represents the probability that a member of community k sells a contract to a member of

community l. Therefore,

yi,j|ξ,Θ∼ Ber.θξi,ξj
/:

K represents the maximum potential number of trading communities allowed a priori. The

effective number of trading communities KÅ in the sample could potentially be smaller than K.

A Bayesian formulation for this model is completed by eliciting prior distributions for K, ξ

and Θ. In what follows we set K =∞ and let the indicators be independent a priori where

Pr.ξi =k|w/=wk, k =1, 2, : : : ,

and the vector of weights w = .w1, w2, : : :/ is constructed so that

wk =vk

∏

s<k

.1−vs/, vk ∼ beta.1−α, β +αk/, .1/

for 0 � α < 1 and β > −α. By setting K = ∞, the model allows for the effective number of

components KÅ to be as large as the number of traders n, for any n.

The formulation in model (1) is equivalent to the constructive definition of the Poisson–

Dirichlet process (Pitman, 1995; Pitman and Yor, 1997), with α = 0 leading to the Dirichlet

process. Hence, the implied prior on the effective number of trading communities KÅ and the

size of those communities, m1, : : : , mKÅ , is given by

Γ.β +1/

.β +αKÅ/Γ.β +n/

KÅ
∏

k =1

.β +αk/
Γ.mk −α/

Γ.1−α/
:

Larger values of α or β favour a priori a larger effective number of communities KÅ. Setting

α=0 leads to the prior expected number of communities to grow logarithmically with n, whereas

for α> 0 the expected number of components grows as a power of the number of traders.

Consider now specifying a prior on the matrix of interaction probabilities Θ. In this case we

let

θk,l|aO, bO, aD, bD ∼

{

beta.aO, bO/, k �= l,

beta.aD, bD/, k = l,

where the subscripts D and O denote diagonal and off diagonal respectively.

This prior is more general than those typically used in stochastic block models, as it allows the

distribution of the diagonal and off-diagonal elements of Θ to have different hyperparameters.

This ensures additional flexibility in terms of the implied degree distribution of the network,

while still ensuring that both p.Y/ and p.Θ/ are jointly exchangeable, i.e. that the distributions

are invariant to the order in which traders or communities are labelled (Aldous, 1981). In

addition, it enables us to define an assortative index for the network as
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Υ= log{E.θk,k|aD, bD/}− log{E.θk,l|aO, bO/}

= log

(

aD

aD +bD

)

− log

(

aO

aO +bO

)

,

and a cycle-type transitivity index

χ=Pr.yi,j =1|yj,k =1, yk,i =1, aO, bO, aD, bD, α, β/=
χN

χD
,

where

χN =
.1−α/.2−α/

.β +1/.β +2/

.aD +2/.aD +1/aD

.aD +bD +2/.aD +bD +1/.aD +bD/

+3
.1−α/.β +α/

.β +1/.β +2/

aD

aD +bD

(

aO

aO +bO

)2

+
.β +α/.β +2α/

.β +1/.β +2/

(

aO

aO +bO

)3

,

and

χD =
.1−α/.2−α/

.β +1/.β +2/

.aD +1/aD

.aD +bD +1/.aD +bD/
+2

.1−α/.β +α/

.β +1/.β +2/

aD

aD +bD

aO

aO +bO

+
.β +α/.β +α+1/

.β +1/.β +2/

(

aO

aO +bO

)2

:

These two indices are model-based alternatives to assortativity by degree and the clustering

coefficients that were discussed in Fig. 1 (Rodriguez and Reyes, 2013).

3.2. Hidden Markov models for time series of financial trading networks

We are interested in extending the hierarchical block model that was described in Section 3.1

to model a time series of financial trading networks Y1, : : : , YT . The extension is built with two

goals in mind. First, we are interested in identifying events that are associated with structural

changes in the network and, therefore, in the microstructure of the market. Second, we aim at

making short-term predictions about the structure of the network in future periods. For these

reasons, we focus our attention on the use of HMMs for network data. HMMs are widely used

in financial (for example, see Ryden et al. (1998) and references therein) and biological (e.g. Yau

et al. (2011) and references therein) applications where there is interest in identifying structural

changes in the system under study. Hence, they represent a natural alternative in this context.

More specifically, consider now a sequence Y1, : : : , YT of binary trading networks observed

over T consecutive time intervals, where all networks are associated with a common set of n

traders. In addition, let ζ1, : : : , ζT be a sequence of unobserved state variables such that ζt = s

indicates that the market is in state s∈{1, 2, : : : , S} during period t ={1, 2, : : : , T}. Each state has

associated with it a vector of community indicators ξs = .ξ1,s, : : : , ξn,s/ with ξi,s ∈{1, 2, : : : , K}
and a matrix of interaction probabilities Θs = .θk,l,s/ representing respectively the grouping of

traders into trading communities and the probabilities of trades between communities when the

system is in state s. Analogously to our previous discussion, S and K represent the maximum

number of states and the maximum number of trading communities that are allowed by the

model a priori. The effective number of states SÅ and the effective number of communities on

each state KÅ
1 , : : : , KÅ

S are potentially smaller than S and K respectively.

Conditionally on the state parameters, observations are assumed to be independent, i.e.

yi,j,t |ζt , {ξs}, {Θs}∼Ber.yi,j,t|θξi,ζt ,ξj,ζt ,ζt
/:
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Hence, the joint likelihood for the data can be written as

p.{Yt}|{ζt}, {ξs}, {Θs}/=
T
∏

t

n
∏

i=1

n
∏

j=1

j �=i

θ
yi,j, t

ξi,ζt ,ξj,ζt ,ζt
.1−θξi,ζt ,ξj,ζt ,ζt

/1−yi,j, t

=
S
∏

s=1

K
∏

k=1

K
∏

l=1

∏

.i,j,t/∈Ak, l,s

θ
yi,j, t

k,l,s .1−θk,l,s/
1−yi,j, t ,

where Ak,l,s ={.i, j, t/ : i �=j, ζt = s, ξi,ζt
=k, ξj,ζt

= l} is the set of observations that are associated

with the interactions between communities k and l in state s.

To account for the persistence in network structure, we assume that the evolution of the

system indicators follows a first-order Markov process with transition probabilities

p.ζt = s|ζt−1 = r, {πr}/=πr,s,

where πr = .πr,1, : : : , πr,S/, the rth row of the transition matrixΠ= .πr,s/, must satisfy Σ
S
s=1πr,s =

1. A natural prior for πr is a symmetric Dirichlet distribution:

πr|γ ∼Dir

(

γ

S
,
γ

S
, : : : ,

γ

S

)

:

As S →∞, the induced distribution of transitions over states is equivalent to that generated by a

Dirichlet process prior with concentration parameter γ (for example, see Green and Richardson

(2001)). Therefore the model is similar in spirit to the infinite HMM that was discussed in

Rodriguez (2012) (see also Teh et al. (2006)). However, our construction does not couple the

values of π1, π2, : : : through a common centring probability. This is in contrast with the infinite

HMM, where all transition probabilities into the same state are assumed to be similar. Indeed,

the structure of the infinite HMM model implies that, if state s is highly persistent (i.e. πs,s is

close to 1), then the probability of transitioning from any other states into state s will also tend

to be large: a property that is unappealing when modelling financial trading networks. Since γ

plays an important role in controlling the number of effective states SÅ, its value is estimated

from the data by assigning an exponential prior to it and carrying out a sensitivity analysis to

evaluate the effect of our prior choice on model performance.

The specification of the model is completed by eliciting hierarchical priors on the state-specific

parameters ξ1, : : : , ξS and Θ1, : : : ,ΘS . Following the discussion in Section 3.1, we let

Pr.ξi,s =k|ws/=wk,s, k =1, 2, : : : ,

where wk,s = vk,sΠh<k.1 − vh,s/ are weights that are constructed from a sequence v1,s, v2,s, : : :

where vk,s ∼ beta.1 −αs, βs + kαs/. Again, since the hyperparameters αs and βs play a critical

role in controlling the number of expected trading communities, they are assigned independent

hyperpriors αs ∼p.αs/ and βs ∼p.βs/. A natural choice is to assign αs a uniform prior on the

unit interval and βs an exponential prior, while carrying out a sensitivity analysis that involves

priors that favour small values of αs as well as priors that favour both lower and higher values

for βs.

Similarly, the interaction probabilities are assigned priors

θk,l,s|as,O, bs,O, as,D, bs,D ∼

{

beta.as,O, bs,O/, k �= l,

beta.as,D, bs,D/, k = l,

where {as,O}, {bs,O}, {as,D} and {bs,D} are independent and gamma distributed with shape
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parameter c and unknown rates dO, eO, dD and eD, which are in turn assigned exponential

priors with means λd and λe.

4. Computation

The posterior distribution that is associated with our HMM for stochastic block models is

not analytically tractable. Therefore, we implemented a Markov chain Monte Carlo algorithm

(Robert and Casella, 2005) that simulates a dependent sequence of random draws from the target

distribution. Given initial values for the parameters, these are successively updated from their

full conditional distributions. Standard Markov chain theory ensures that, after an appropriate

burn-in, the values of the parameters that are generated by the algorithm are approximately

distributed according to the posterior distribution. To derive the algorithm, we rely on the fact

that the joint posterior distribution can be factorized as

p.{Θs}|{ξs}, {ζt}, {as,O}, {bs,O}, {as,D}, {bs,D}, {Yt}/

×p.{ξs}, {ζt}, {as,O}, {bs,O}, {as,D}, {bs,D}, dO, eO, dD, eD, {αs}, {βs}, γ|{Yt}/: .2/

Since the values of θk,l,s are conditionally independent a posteriori given the observations,

the indicators {ζt} and {ξi,s}, and the prior parameters {as,O}, {bs,O}, {as,D} and {bs,D}, the

first term in expression (2) is easy to sample from. Furthermore, conditionally on the other

parameters in the model, the state indicators ζ1, : : : , ζT are sampled jointly by using a forward–

backward algorithm (Rabiner and Juang, 1986), whereas the full conditional distribution for

each collection of indicators ξ1,s, : : : , ξn,s is sampled by using a collapsed (marginal) Gibbs

sampler (Neal, 2000). Details of the algorithm are discussed in Appendix B.

Given a sample from the previous Markov chain Monte Carlo algorithm,

.{Θ.b/
s }, {ξ.b/

s }, {ζ
.b/
t }, {a

.b/
s,O}, {b

.b/
s,O}, {a

.b/
s,D}, {b

.b/
s,D}, d

.b/
O , e

.b/
O , d

.b/
D , e

.b/
D , {α.b/

s }, {β.b/
s }, γ.b//,

b=1, : : : , B,

obtained after an appropriate burn-in period, point and interval estimates for model parameters

can be easily obtained by computing the empirical mean and/or the empirical quantiles of the

posterior distribution. Note that the model has label switching issues that are associated with the

state and community indicators. This produces identifiability problems that can be addressed

by focusing inference on identifiable functions of the parameters. For example, posterior co-

clustering probabilities, ωt,t′ =Pr.ζt = ζt′ |{Yt}/ are estimated as

ω̂t,t′ =Pr.ζt = ζt′ |{Yt}/≈
1

B

B
∑

b=1

I.ζ
.b/
t = ζ

.b/
t′ /,

where I.·/ denotes the indicator function. The estimates are arranged into a coclustering matrix

.ω̂t,t′/, which is in turn used to identify the state of the system at each time period through the

decision theoretic approach that is used to perform Bayesian model-based clustering presented

by Lau and Green (2007). More specifically, the point estimate for the grouping of networks in

state s is found by minimizing the posterior expected loss that is associated with a loss function

that reflects the penalty that is incurred by pairwise misclassification. The point estimate of

the states is found on the basis of the posterior coclustering probabilities ω̂t,t′ and a constant

value 0 � K0 � 1 usually chosen to be greater than 0.5 to obtain a refined partition with low

uncertainty within each cluster. A similar procedure is carried out to obtain the community

structure, using the vector of community indicators ξs = .ξ1,s, : : : , ξn,s/ to estimate the pairwise
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posterior probability of any two traders to belong to the same community at each state of the

system.

The samples from the posterior distribution can also be used as the basis for prediction. For

this, note that the probability that trader i sells at least one security to trader j in the unobserved

period T +1 can be estimated by

E.yi,j,T+1|{Yt}/≈
1

B

B
∑

b=1

π
.b/

ζ
.b/
T ,s

θ
.b/

ξ
.b/
i,s ,ξ

.b/
j,s

:

Using a simple 0–1 utility function, a future sell trade from trader i to trader j is predicted

as ŷi,j,T+1 = I[E.yi,j,T+1|{Yt}/ > f ], for some threshold f that reflects the relative cost that is

associated with false positive and false negative links.

5. Analysis for the New York Mercantile Exchange natural gas futures market

In this section we analyse the sequence of T = 201 weekly financial trading networks from

transactions between 290 traders in the NYMEX natural gas futures market that was introduced

in Section 2. The results that are presented in this section are based on 50000 iterations after

a burn-in period of 50000 iterations with a thinner of 5. Convergence of the algorithm was

diagnosed by using the R-statistic of Gelman and Rubin (1992) for two independent chains

of the log-likelihood function and by a visual evaluation of trace plots (Appendix C). We also

monitored the number of active states SÅ and the mean and variance over time of the assortativity

and transitivity indices {Υt} and {χt}. In terms of hyperparameters, the maximum number of

states is set to S =30, the prior means for γ and {βs} are assigned exponential priors with unit

mean and the priors for dO, eO, dD and eD are exponential distributions with mean 2. This

specification implies that, a priori, E.Υt/=0 for all t =1, : : : , T , so we favour neither assortative

nor disassortive trading communities a priori.

5.1. Identifying changes in market microstructure

The posterior estimate of the coclustering matrix for the latent states ζ1, : : : , ζT is presented in

Fig. 4, along with a point estimator for the grouping of networks into states (recall Section 4).

This point estimator (obtained for a value K0 = 0:7) suggests that the structure of the trading

networks alternates between five states. The first state runs between early January 2005 and late

February 2006. The second state runs between late February 2006 and early August 2006, which

was about a month before the electronic market is introduced. The third state then lasts until

early February 2007 before the system transitions to a new state for a short period of 6 weeks.

After that, the system seems to transition to a fifth state in late March 2007 and remains in

this state for the remaining weeks in the period observed. Our proposed model is sufficiently

flexible to allow for early states to be revisited but in this particular application a simple change

point model could have been a viable option. Also, it is clear from the heat map that, although

some uncertainty is associated with this point estimate of the system states (mostly in time of

the transitions between states), this uncertainty is relatively low. Note that these results have

some similarities with those we reported in Fig. 2, but also some important differences. In

particular, all models agree on the presence of a change point associated with the introduction

of electronic trading on September 5th, 2006, but disagree on the timing and structure of other

change points.

Fig. 5 shows estimates of the community structure that is associated with representative

weeks from each of the five states. In this case, the values of the incidence matrices represent the
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Fig. 4. (a) Point estimate of the states for the 201 weeks observed for the trading network ( , introduction
of the electronic platform on week 85) and (b) mean posterior pairwise incidence matrix for the NYMEX
networks under our block model HMM, illustrating the uncertainty associated with this point estimate
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posterior probability of any two traders to belong to the same cluster under each state of the

system. The matrices are arranged according to the optimal clustering for each state to showcase

the community structure over time. Although there are some similarities, the overall structure

of the communities is quite different. For example, state 1 is characterized by a large group of 66

mostly inactive traders, seven small communities comprising between five and 13 traders each,

whereas all other traders tend to fall, for the most part, into singleton clusters or clusters of

size 2. In contrast, although state 4 also exhibits some singleton clusters, it also shows a larger

number of small communities comprising between four and 11 traders each.

From Fig. 5 we see low uncertainty about the membership of the traders to the communities

and a big number of singletons for all states. Because of the amount of information that is

available for the traders over the 201 weeks, the model produces a very refined profile for the

role of the traders in the communities leading to a large number of groups with only one element.

The time series plots for the estimates of the assortativity and transitivity indices Υ1, : : : , ΥT

and χ1, : : : , χT are presented in Fig. 6. Recall that these quantities are model-based alternatives

to the assortativity by degree and the clustering coefficient that is presented in Fig. 1. Both sets

of plots share some common features, revealing mild assortativity and higher transitivity before

September 2006 and disassortative networks with lower transitivity afterwards. This makes sense

because we would expect that the introduction of an electronic market would limit the effect

of social connections between traders (which tend to be assortative and transitive) and favour

connections based on differential trending strategies (which tend to be disassortative).

5.2. Network prediction

As we discussed in Section 1, besides identifying change points in market microstructure, a

secondary goal is to predict future trading partnerships. To assess the predictive abilities of the

model we ran an out-of-sample cross-validation exercise where we held out the last 10 weeks

in the data set and made one-step-ahead predictions for the structure of the held-out networks.

More specifically, for each t = 191, 192, : : : , 200 we use the information that is contained in

Y1, : : : , Yt to estimate the model parameters and obtain predictions for Ŷt+1 for different values

of the threshold f . Each of these predictions is compared against the observed network Yt+1, the

number of false and true positive results is computed and a receiver operating characteristic curve

is constructed. For comparison, the same exercise was performed with a temporal ERGM and

the dynamic stochastic block model dynsbm that was proposed in Matias and Miele (2017). We

used the xergm and dynsbm packages in R to estimate the temporal ERGM (Leifeld et al., 2014)

and the the dynamic stochastic block model respectively. More specifically, the temporal ERGM

is estimated with the btergm function, which implements the bootstrapped pseudolikelihood

procedure that was presented by Desmarais and Cranmer (2012). The model that we fit includes

all the typical ERGM terms, the square root of in- and out-degrees as node covariates and the

lagged network and the delayed reciprocity to model cross-temporal dependences.

In contrast with our proposed HMM, the implementation of the model of Matias and Miele

(2017) requires the number of groups to be specified in advance. We computed the integrated

classification likelihood for values between 3 and 20 of the number of groups by using the

dynsbm package (see Fig. 10 in Appendix D). According to these results the optimal number

of groups is 8. Fig. 7 displays the group membership of the 290 traders over the 4-year period.

The traders were arranged according to their group membership in the first week to show the

stability of the community structure over time. From these results we observe that the commu-

nity membership varies considerably each week, thus making the identification of structural

changes in the evolution of the network over time challenging. Before the introduction of the
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Fig. 6. Time series plot for (a) assortativity and (b) transitivity indices: , transitions across states identified
from Fig. 4

electronic platform, we see how the community structure in the market was relatively more sta-

ble. Furthermore, a fair amount of traders who were consistently active before the introduction

of electronic trading became less active or exited the market completely and vice versa (see

Fig. 7(b)). These results are consistent with our initial exploratory analysis of the data and the

inference performed with our model. Fig. 8 displays the ROC curves that are associated with

one-step-ahead out-of-sample predictions from our HMM and a comparison of area under the

curve, AUC, values for the predictions of the last 10 weeks for the three models considered. The

results indicate that the prediction ability of all the models is very good with an average AUC

of 95%, 94% and 92% for dynsbm, our proposed HMM and the temporal ERGM respectively.

Even though in this particular case dynsbm slightly outperforms our model (with the exception
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of weeks 198 and 200) the results are encouraging considering that our HMM model is more

parsimonious (only five community configurations or states), and the community structure is

more interpretable and suitable for change point detection.

5.3. Sensitivity analysis

To assess the effect of our prior choice on posterior inference we conducted a sensitivity analysis

where the model was fitted with somewhat different priors. In particular, we used independent

beta priors with mean 1
10

and variance 9=1100 for each αs, as well as exponential priors with

means 1
3

and 3 for each βs. In contrast, exponential priors with mean 2 were also used for dO,

eO, dD and eD. Although inferences on the community structure were somewhat affected by

prior choices and inferences on the state parameters as well as the assortativity and transitivity

indices and the predictive performance were essentially unchanged.

6. Discussion

We have presented a class of HMMs for financial trading networks that have clear potential for

market regulatory oversight. Key applications of these models include identifying specific events

(such as large trader failures or specific changes in market rules) that affect market stability,

as well as identifying frequent trading counterparties that might be likely collusion partners

or particularly at risk in case of bankruptcies. The financial trading network in the NYMEX

market displays patterns of disassortative behaviour and drastic structural changes after the

introduction of electronic trading, which also affected traders’ survival.

Although the use of an HMM enables us to account for time dependence and is useful for

identifying structural changes in the system, a structure that assumes abrupt changes in the

network might be too restrictive for predictive purposes. Models based on fragmentations and

coagulations (for example, see Bertoin (2006)) that allow for smooth evolution in the community

structure can potentially enable improved predictions. Recent work on dynamic network models

that consider parameters of link (and non-link) persistence over time could also be explored in

this context (Xu, 2015; Friel et al., 2016; Barucca et al., 2017). In this paper we have focused

on models for binary networks where only the presence or absence of transactions over a week

is recorded. However, when other information is available (e.g. the volume of transaction), the

model can be easily extended to incorporate it.

Appendix A: Hidden Markov model with bivariate normal emissions

In Section 2 we fitted an HMM with bivariate Gaussian emissions for different pairs of summary statistics
on the NYMEX network. In this appendix we provide a detailed formulation of the model.

Let xt = .x1, t , x2, t/
′, where x1, t and x2, t are two summary statistics (such as the clustering and assortativity

coefficients) of the network observed on week t. We assume that

xt |ζ
Å
t , {µs}, {Ωs}∼N.µζÅ

t
, ΩζÅ

t
/, t =1, : : : , T ,

where µs ∼ N.d, D/ and Ωs ∼ IW.a, B/ independently for each s = 1, : : :, R and, as in our other model in
this paper, the state indicators satisfy

p.ζÅ
t = s|ζÅ

t−1 = r, {πÅ
r }/=πÅ

r,s, πr|γ
Å ∼Dir

(

γÅ

R
, : : : ,

γÅ

R

)

:

For the analysis that was shown in Section 2 we set γÅ = 1, and set d to the mean and D and B both to
the variance–covariance matrix of the observations. The estimates of the pairwise probabilities Pr.ζÅ

t =

ζÅ
t′ |{xt}/ were obtained from 10000 iterations (obtained after a burn-in period of 1000 samples) of a
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Markov chain Monte Carlo algorithm that alternates through sampling {µs}, {Ωs} and {ζÅ
t } from their

corresponding full conditional posterior distributions. The details of the algorithm are very similar to that
discussed in Appendix B for the HMM with block model emissions.

Appendix B: Computational algorithm for the hidden Markov model with block

model emissions

Here, we provide the details of the Markov chain Monte Carlo algorithm that was discussed in Section 4.
The algorithm proceeds by updating the model parameters from the following full conditional distribu-
tions.

(a) For each i=1, : : : , n and occupied states s, ξi,s =k with probability

Pr.ξi,s =k|: : : , Y/

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

.m−i
k −αs/

KÅ
s,−i
∏

l=1

p[{yi,j, t : .i, j, t/∈Ai
k, l,s}]

p[{yi,j, t : .i, j, t/∈A−i
k, l,s}]

p[{yj, i, t : .i, j, t/∈Ai
k, l,s}]

p[{yj, i, t : .i, j, t/∈A−i
k, l,s}]

, k �KÅ
s,−i,

.βs +αsK
Å
s,−i/

KÅ
s,−i
∏

l=1

p[{yi,j, t : .j, t/∈A−i
l,s}]p[{yj, i, t : .j, t/∈A−i

l,s}], k =KÅ
s,−i +1,

where KÅ
s,−i =maxj �=i{ξj,s}, m−i

k =Σj �=iI.ξj, s=k/,

A−i
k, l,s ={.i′, j′, t/ : i′ �= j′ �= i, ζt = s, ξi′ ,ζt

=k, ξj′ ,ζt
= l},

Ai
k, l,s ={.i′, j′, t/ : i′ = i, ζt = s, ξj′ ,ζt

= l}∪A−i
k, l,s,

A−i
l,s ={.j, t/ : j �= i, ζt = s, ξj,ζt

= l},

and the marginal predictive distribution, p[{yi,j, t : .i, j, t/∈A}] is given by

Γ.ΣAyi,j, t +as/Γ.|A|+bs −ΣAyi,j, t/

Γ.as +bs +|A|/

Γ.as +bs/

Γ.as/Γ.bs/
,

and |A| is the number of elements in A.
(b) Since the prior for θk, l,s is conditionally conjugate, we update these parameters for k, l∈{1, : : : , KÅ

s }
by sampling from

θk, l,s|: : : , Y ∼beta

(

∑

Ak, l, s

yi,j, t +as, mk, l,s +bs −
∑

Ak, l, s

yi,j, t

)

for Ak, l,s ={.i, j, t/ : i �= j, ζt = s, ξi,ζt
=k, ξj,ζt

= l} and mk, l,s =|Ak, l,s|.
(c) Since the prior for the transition probabilities is conditionally conjugate, the posterior full condi-

tional for πr, r =1, : : : , S, is the Dirichlet distribution

p.πr|: : : , Y/=
S
∏

s=1

πγ=S+nrs−1
r,s

for nrs =|{t : ζt−1 = r, ζt = s}|.
(d) The posterior full conditional of γ is

p.γ|: : : , Y/∝p.γ/
S
∏

s=1

Γ.γ/

Γ.γ +ns/
γLs

where ns = |{t : ζt = s}| and Ls = ΣrIns, r>0 for ns,r = |{t : ζt−1 = s, ζt = r}|. Since this distribution
has no standard form, we update γ by using a random-walk Metropolis–Hastings algorithm with
symmetric log-normal proposal:

log.γ.p//|γ.c/ ∼N{log.γ.c//, κ2
γ}



214 B. Betancourt, A. Rodrı́guez and N. Boyd

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5

Week

A
U

C

192 193 194 195 196 197 198 199 200 201

(a)

(b)

Fig. 8. (a) 10 operating characteristic curves associated with one-step-ahead out-of-sample predictions
from our HMM and (b) time series plot of the area under the curves, AUC, for the temporal ERGM ( ), dynsbm
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Fig. 9. (a), (b) Trace plots for two Markov chain Monte Carlo chains of the log-posterior with different initial
values and (b) Gelman and Rubin’s R-statistic: , median; , 97.5% percentile

where κ2
γ is a tuning parameter chosen to obtain an average acceptance rate between 30% and 40%.

(e) The posterior full conditional of the pairs .as,O, bs,O/ and .as,D, bs,D/ has the following general form:

p.as, bs|: : : , Y/∝p.as|d/p.bs|e/
S
∏

k=1

S
∏

l=1

p.yi,j, t |Ak, l,s, mk, l,s/

for the marginal predictive p.yi,j, t |Ak, l,s, mk, l,s/ as defined in step (b), Ak, l,s = {.i, j, t/ : i �= j, ζt = s,
ξi,ζt

= k, ξj,ζt
= l} and mk, l,s = |Ak, l,s|. Since no direct sampler is available for this distribution, we

update each pair by using a random-walk Metropolis–Hastings algorithm with bivariate log-normal
proposals:

.log.a.p/
s /, log.b.p/

s //T|.a.c/
s , b.c/

s /T ∼N{.log.a.c/
s /, log.b.c/

s //T, Σab}
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Number of groups

Fig. 10. Integrated classification likelihood criterion ( ) for number of groups 3–20 (the optimal number of
groups is QD8): log-likelihood

where Σab is a tuning parameter matrix chosen independently for diagonal and off-diagonal pairs
of parameters.

(f) The parameters of the Poisson–Dirichlet process .αs, βs/ can be jointly updated by using the algo-
rithm that was described in Escobar and West (1995).

(g) The posterior full conditional distributions for the hyperparameters dO, eO, dD and eD correspond to
gamma distributions with shape parameter cSÅ +1 and rate parameters .ΣSÅ as,O +λd/, .ΣSÅ bs,O +

λe/, .ΣSÅ as,D +λd/, .ΣSÅ bs,D +λe/ respectively.

Appendix C: Convergence diagnostics

We performed two runs with different initial values and monitored the log-posterior of the model to check
convergence. The mixing in these types of model tends to be slow so we thinned the chain every five
iterations for a total of 20000 final iterations out of 100000 initial iterations. Fig. 9 displays the trace plots
for the two Markov chain Monte Carlo chains, and the results for Gelman and Rubin’s R-statistic for
convergence diagnostics, where we obtained values close to 1 suggesting that the chains have converged.
We utilized the results from the Gaussian emission model in Section 2 to initialize the chains in ‘good’
starting points to facilitate convergence.

Appendix D: Results for dynsbm

Implementation of the model of Matias and Miele (2017) requires the number of groups to be specified in
advance. Fig. 10 displays the integrated classification likelihood for values between 3 and 20 of the number
of groups by using dynsbm. According to these results the optimal number of groups is 8. We use this
number of groups to fit the model and perform the one-step-ahead out-of-sample predictions that were
presented in Section 5.2.
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